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Determinantal solution of density matrix equations in time- 
dependent quantum mechanics: 11. Harmonic perturbation 

AndrC Fortini 
Laboratoire de Physique des Solides de I’Universite de Caent, 14032 Caen Cedex, France 

Received 25 April 1984 

Abstract. The determinantal formalism for solving the time-dependent Schrodinger 
equation of the density matrix has been developed, in I, assuming a constant external 
perturbation. The important case of an harmonic perturbation is presented here. Detailed 
expressions are derived for diagonal and non-diagonal elements of the response, and the 
trace conservation theorem is shown to be satisfied at all time and any order. The results 
are again applied to the simple illustrative quantum system considered in I. 

1. Introduction 

A lot of effort has been devoted, in the last two decades, to the resolution of the 
time-dependent Schrodinger equation in the case of harmonically excited quantum 
systems. The relevance of these investigations is easily understood because of their 
direct connection with the fundamental problem of the interaction of matter and 
radiation in the semi-classical scheme. 

Since the early work of Shirley (1965) which related the periodic Hamiltonian to 
a static one represented by an infinite matrix, and several more recent extensions (see 
Milfeld and Wyatt 1983 for a review and references) various solutions have been 
proposed to improve the perturbation theory (Sambe 1973, Sen Gupta 1973), the 
propagator (Salzmann 1974), or the mean energy calculation (Kelemen 1979), in the 
case of oscillatory Hamiltonians. None of them, however, lead directly to tractable 
expressions of the density matrix. In the previous paper (Fortini 1983, hereafter referred 
to as I) the determinantal formalism initially built up in the evolution operator problem 
(Fortini 1981), has been extended to the time-dependent Schrodinger equation of the 
density matrix when the external perturbation is constant. The purpose of this second 
part is to work out a further extension to the case of an harmonic external perturbation. 

Following Shirley (1965), by means of the introduction of the so-called ‘Floquet 
states’, the determinantal expressions of the evolution operator pertaining to an oscillat- 
ing excitation was already shown to reduce to the case of constant one (Fortini 1981). 
The same is true in the density matrix formalism, although the relevant Schrodinger 
equation, the related kernel, etc.. . . are rather more involved. Thanks to this property 
the harmonic case will not cause any extra formal difficulty, so that we shall only have 
to choose a suitable set of notations (9 2) and to proceed to an appropriate extension 
of the most important equations (9  3). Our illustrative simple system will be, once 
more, reconsidered as an application in 9 4. 
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2. Integral equation of the density matrix and Fredholm-Laplace solution 

The Hamiltonian of the physical system will be written as 

H = Ho + V +(A e-'"' +A+ e'"') Y (  t )  

where Ho denotes an unperturbed Hamiltonian of eigenkets Ik) and eigenvalues 
&k = hmk. Vis a collision potential and the constant operator A represents the amplitude 
of the external harmonic perturbation, of circular frequency w, assumed to be applied 
from t = 0, as stated by the Heaviside step function Y ( t ) .  

Let us rewrite, for clarity, the equation defining the density matrix p ( t )  from the 
evolution operator U( t )  

p ( t )  = U(t )p(O)U+( t ) ,  (2.2) 

dp/dt = (ih)-'[H, p(t)]. (2.3) 

and the time-dependent Schrodinger equation 

The Laplace transform of p ( t )  

R( v) = lom e-"p( t )  dr or R ( v ) c  A t ) ,  

will again be introduced, making use of the elementary properties 

dp/dt  2 vR( Y) - p ( O )  

exp(*iwt)p(t)I  R ( v r i w ) .  

Equation (2.3) thus becomes 

vR(v)=p(O)+(ih)-'[H,+ V,  R(v)]+(ih)-'[A, R(v+iw)] 

+(ih)-'[A+, R(v-iw)]. 

Taking this equation between the bra (a1 and the ket Ib) gives 

v ~ ; ( v )  = p ~ ( ~ ) - i o , ~ ~ i ( v ) - i h - ' [ V ; ~ ~ ( v ) - ~ f ( v ) ~ ~ ]  

-ih-'[AiRt( v +io)  - R;( v +io)At] 

(2.4) 

- ih-'[AlcR;( v - i w )  - R;(  v - iw)Ab+l'], (2.6) 

where 0 , b  = w, - o b ,  R i (  v )  = (clR( v) lb) .  In the following, p;  will stand for p;(O) as 
long as no confusion may occur with PE(?), and summations over repeated indices 
will be implicit, as usual. 

In Fortini (1981) the linear system was constructed whose complete solution is 
represented by the 'column vector' defined by the following bn components 

F:( v +inw) = F p (  v), (2.7) 
where n is an integer and a the starting state of the physical system. Fb" was defined 
as a vector belonging to the Hilbert space gHo sustained by the eigenstates of H,, and 
extended so as to include all the vectors deduced from any v-dependent vector by the 
inw translations. R ( v )  will now be regarded as a vector belonging to the tensorial 
product of this extended representative space by its own dual, i.e. 

g H o H o  = %HOB Go 
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and, as such, it will be noted R ( v ) .  Its cnbm components will be denoted R c n b m ( v ) .  
Let us assume, for simplicity, that p (  t )  is diagonal at t = 0. From equation (2.2), the 
cnbm component of R (  V )  is defined by the following convolution integration 

RCnbm(V) = [ F ' , ( v + i n w )  * F,+"(v-imw)]p:(O), 

RCnbm(V) =[Fa(V) * F~~(V)lp:(O).  (2.8) 
or 

F L i  is a row-vector component such that 

Fl$(  V )  = F;"( Y - imo) = [F:"( v*)]* 

in accordance with both the definition of the complex conjugate of the Laplace 
transform of a given function and the conjugate of a given matrix. As defined by 
equation (2.8), RCnbm is only dependent on the difference n - rn. On returning to the 
original, and using elementary properties of the Laplace transform, we have 

whence 
U:( t )  = e- inwrUz( t ) ,  ~ L i ( t )  = eimwru+'(  bo t ) ,  

p Y m ( t t )  = ur(t) UL$(t)p;(O) 

C ( t )  ub+,"(t)p:(O), (2.9) 

(2.10) 

= e- i (n-m)wr 

and the subsequent Laplace transform 

RCnbm( V )  = RCob,( V + i W n m )  

with on, = ( n  - m)o. Thus we may write 

RCnbm( V )  = Rcn-mbo( L' )  = RC0bm-,,( V ) ,  (2.1 1 )  

so that the R-components are labelled by the set of quantum numbers cb and one 
integer only. 

Equation (2.14b) in I again holds 

( Z + d - ' K ) I R ) =  d- l lp)  (2.12) 

and is equivalent to the system 

(2.13) 

1 stands for a column vector, all components of which are equal to 1 in the relevant 
nm subspace. Matrix elements of the commutation kernel K are derived from those 
of the kernel K of the F-equation as 

(c2n2b2m21Klcln,b,m,)= K:2",2lZ1 1 1 2 2  = K?:;S!lZl 2 2 - SC2"2Kblml c ~ n l  bzm29 (2.14) 

K : : ~ ; = i h - ' ( V : : S ~ : + A ~ S ~ : + ' + A ~ C 2 8 ~ - 1 ) .  (2.15) 

Since p(0 )  does not depend on n, m, the components of the vector Ip(0) )  in the nm 
subspace are all equal to 1. This is recalled in equation (2.13) by the 11, for notational 
consistency. dcnbm denotes a current eigenvalue of the following diagonal operator in 

with 

(2.16) 
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where 1 and H,, have the same meaning as in I ,  and P,, P,, denote the projectors on 
n, m states. The system (2.13) represents the set of difference equations derived from 
equation (2.6) in all substitutions Y + Y +ino. 

Since the kernel matrix elements (2.14) are obviously dependent on n, - n,, m ,  - m2 
only, it can be easily verified that if Rcnbm is a solution of the system (2.13), the same 
is true for Rcn+Pbm+p in accordance with the property (2.10). The point is that, in 
applications, n, m refer to integer numbers of quanta in the field, whose variations we 
are concerned with in the transitions under consideration. We thus can take m = 0 in 
equation (2.13). Furthermore, as in I, the hermiticity of the kernel iK which writes 

(Kf:::)* = -K'I"I 
c2n2 

entails the hermiticity of the kernel iK in the form 

(2.17) 

whereas the trace property is simply expressed as 

Tr[ K, 01 = (bnbm I K 10) = 0 (2.18) 
b 

for any operator 0. 
The Fredholm solution of the system (2.13) can then be written as 

(2.19) 

where D is the determinant of the system and DS:,,~bml the algebraic minor at the 
crossing of the cI n, 6 ,  mi -row and the cnbo-column. In fact it is sufficient to calculate 
the solution REOb,,, since on account of (2.10), 

RCnb  = RCobo( V +inw) .  

As resulting from the property (2.17), the conjugate of RCnbo is 

(Rcnbo)*=Rbocn 

in accordance with the hermiticity of the R matrix in 8,. 
The expression (2.19) generalises the result (2.17) in I, by simply substituting the 

cnbm Floquet-states of the properly extended Hilbert space for the initial cb states. 
The harmonic perturbation case is thus reduced to the static one, and all the subsequent 
results of I can be easily rewritten, in the same way as in (2.19). This will be done 
for the most important of them in the next section. 

3. Reduced determinantal expressions 

3.1. First reduced form 

The system will be conveniently assumed in diagonal states, at t = 0. This assumption, 
however, is not essential. The foregoing results could be written for any set of initial 
states as well. The starting equation (3.3) in I is first extended for any anam initial 
state as follows 

(I +d-'KQ,,,,)-'(I+d-'K)IR)= d-llanam) (3.1) 

and leads to the following expressions of the R-components. For the non-diagonal 
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cobo-component 

(Cobol d-'KS;,!aml unum) 
v + io,, +(unurnlKS;;,Lamlunum) RCobo = - p:1:, 

and for the diagonal bobo-component 

P X I  (b~boId- 'KSi , !~ , , , (  bnbm)pL 1 k 
Rbobo = 

v + (boboIKS~~b,Ibobo) - v + iw,, +( bnbmlKSidbml bnbm) 

- (bobold-'KS;,!,,Ianum)p:l k 
v +iw,, +(unumlKS;,!,,1anum) 

(unum # bobo), with 

sanam = I + Qanamd-IK. 

2645 

(3.2) 

(3.3) 

(3.4) 

In (3.3), the contributions in pi1  z and pi1 
their particular mathematical form. 

procedure of the related Fredholm expressions derived from (2.19) 

(nm # 00) are separated out because of 

Again, these expressions can be obtained by means of a systematic 'reduction' 

and 

3.2. Second reduced form 

We now proceed to work out the second reduction stage by solving X systems of the 
type 

Sanam\X) = d-'Klunum) = d;;d,,KZP,)kpam)- d;rfkpKiFIunkp) (3.7) 

whence 

and similar expressions for the elements X"",,, X b o b o  arising in ( 3 . 2 )  and (3.3). The 
D and the relevant minors now pertain to the matrix (3.4). XCobo  is next reduced as 
follows 

(3.9) 
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with 
Sanamankp = + Q a n a m Q a n k p d - ' K  etc. . . . (3.1 1)  

The second reduced form will be finally obtained by using the above expressions of 
the X matrix elements in (3.2) and (3.3). The initial state of the relevant equation 
(3.7) is recalled in a bracket 

X C o b o ( a n a m ) p ~ l  k 
( v  +iwnm)[l +Xanam(anam)] '  

RCobo = - (3.12) 

- Xbob,(anam)p:l k 
( v  +iw,,)[l +Xanam(anam)]  

3.3. Truce conservation 

In spite of the similarity with the results of I, 

(3.13) ( b  # a ) .  

it is worthwhile reconsidering the trace - 

conservation theorem with regard to the complications arising from the extra n, m 
quantum numbers in the representative space. Confining ourselves to the two times 
reduced expressions, which are of the most interest in applications, we start with 
equation (3.13) 

Tr R = 1 Rbob, 
h 

- - p:1: Xb"b,(bnbnt)pL1 k ? U[l +xbob,(bObO)]- ? (V+iW,,)[l +Xbnbm(bnbm)] 
n m # W  

(3.14) 

Consider the third term on the right-hand side. Xbobo(anam) is deduced from (3.9) 
and (3.10) by taking c = b. Summing over all states, except a, first gives, in the 
numerators 

= - ( b o b ~ ~ d - ' K S ~ ~ ~ ~ ~ ~ ~ ~ ~ k p a m )  
b # a  

(3.15) 

on account of the property (2.18). Using this result in the third term on the right-hand 
side of (3.14), leads to 

P 3 :  Xb"bo(bnbm)p; l ;  
b Rbobo =; V[l +xbobo(b0bO)]- ? (V+iWnm)[l +xbnb,(bnbnt)] 

n m # W  

All contributions n or m # 0 cancel with each other in the second and the third term 
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on the right. Detailing the remaining terms finally gives 

(3.16) 

It is now quite visible that, by simply associating these two summations, the trace 
conservation theorem is recovered as 

(3.17) 

and remains true at any order of the kernel K. 

4. Application to a simple model 

We will, once more, consider the simplified physical system defined in previous 
publications (Fortini 1981, 1983). The external potential A( t )  is now taken of the form 

A( t )  = A exp( -iwt) +A+ exp(iwt), (4.1) 

and induces transitions from an initial state a toward a continuum of states b, c, . . . 
lying around energies hwa rt hw. Through direct application of formulae (3.13) and 
(3.10), we first found that in the occupation probability of the a-state, only the first 
term on the right-hand side of (3.13) remains. Using equation (A3) the relevant matrix 
element Xbobo(bobo) is shown to involve two types of contributions, depending on 
whether the transition under consideration relates to an absorption or an emission 
process, i.e. on whether the continuum energies wb, U , .  . . wk, . . . are larger or smaller 
than w,. Assuming an absorption process for definiteness, we finally obtain the aa- 
matrix element of R as follows 

1 
v+i(oak + w )  +IAL12/h2(v+i~lk) 

+ (4.2) 

The terms in the square brackets are conjugate to each other. 
The current matrix element between excited states&, c is next calculated, starting 

with (3.12). Making use of (A2) and (A3), we readily obtain, in the absorption case 

A:A;" 
RCobo = 

h ( v  +io&) 
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Setting c = b, then summing over the final continuum, it is straightforward to see that 

1 
R"",, + Rbobo =- 

b # a  U' 

which simply expresses the trace conservation theorem in the present model. We 
notice, in addition, that there exists a long-term distribution in the excited states, which 
is defined by 

whereas the initial state becomes empty in that limit 

pz(  t -, 00) = lim [uRao4,( v)] = 0. 
I,+ +O 

The physical meaning of these results is evident. 
The broadening terms in expressions (4.2) and (4.3) involve summations over 

dummy indices, along the cut defined by the spectrum of the system, as explained in 
I. The actual range of integration, however, is more restricted, in the vicinity of y - 0, 
consistent with energy conservation to within the uncertainty relation. Through integra- 
tion over k (or I ) ,  resonant l / d  terms lead to complex roots in the denominators, 
confined close to the origin. Non-resonant l / d  terms (which have been deleted) should 
yield negligible additional contributions to these roots. Going on to calculations in 
the same simplifying assumptions as in I, we have typically for the broadening terms 

then 

h-'1A:l2 2- - lA12ealn u+i(wZ4-W+Pk)*Yk c 
k u+i(Wk4-W+Pk)fYk h2 U+i(W24-W+Pk)*7k 

= -iPo + y4, 

All the broadening parameters have nearly the same value. Using these results, 
equations (4.2) and (4.3) simplify as follows 

1 + 1 ( 
h-2AEAb+4 

Ri ( i7 )  = 

valid on each side of the cut. Except for the w translation, these formulae are the 
same as in I .  The resulting original functions give 

i ( i7  + W c b ) ( i 7  +2Ya) i(7 +wca - @  +Pa)* y o  i(7 +@ob - P a ) *  ?4 
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Appendix. Calculation of X matrix elements in the simple model 

To second order in K 
d-l K C O  kp 

(AI) 
robo a n b o K t ;  

d-1 ~ C O a m ~ k p  

Jr 
cob0 kpbo  an XCobo( anum) = - 

dkP,, - ( kpam I Kd- K I kpam ) dankp - ( ankp I Kd-  I K 1 an kp)' 

Writing the first numerator on the right-hand side in detail gives 
d-1 K C O  Gm K k p  

cob0 kp bo an 
- 

= - d ( i h - ) ' [ (Ai  6 + I  + A lc 8 Po--] ) 6 :r 
- sE(Ag6;" + A b + " ~ S ~ - l ) l ( A ~ 6 ~ + ~  +A,'kS:- l )  

where terms which entail U,,, = 2w, giving negligible contributions near the resonance, 
have been dropped. Similarly 

We thus obtain four contributions in which we have either kp = CO or bo with m = n = 
+ 1 ,  and the denominators in (Al )  are to be calculated accordingly. We will find for 
instance 

On the right-hand side, the third term which is resonant will be retained only. Carrying 
out analogously the other similar calculations, we finally obtain 

It is readily recognised that either only the terms m = n = 1 or m = n = - I  remain, 
depending on whether the continuum b, c, . . . k, . . . lies above or below the initial state 
U. In the former case the transition relates to an absorption process, and in the latter 
case to an emission process. 

We now turn to consider matrix elements of the form X"",, (anum) which also 
arise in (3.12) and (3.13). Through quite similar calculations and deletion of non- 
resonant terms, we obtain 

where absorption and emission contributions will be separated again. 
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